293 research outputs found

    Muon ID- Taking Care of Lower Momenta Muons

    Get PDF
    In the Muon package under study, the tracks are extrapolated using an algorithm which accounts for the magnetic field and the ionization (dE/dx). We improved the calculation of the field dependent term to increase the muon detection efficiency at lower momenta using a Runge-Kutta method. The muon identification and hadron separation in b-bbar jets is reported with the improved software. In the same framework, the utilization of the Kalman filter is introduced. The principle of the Kalman filter is described in some detail with the propagation matrix, with the Runge-Kutta term included, and the effect on low momenta single muons particles is described.Comment: PDF,5pages,2 Figures,1 Table,Presented at the 2005 International Linear Collider Physics and Detectors Workshop,Snowmass,Colorado,14-27 Aug. 2005, PSN1011 in the proceedin

    Scalar Top Quark Studies with Various Visible Energies

    Get PDF
    The precision determination of scalar top quark properties will play an important role at a future International Linear Collider (ILC). Recent and ongoing studies are discussed for different experimental topologies in the detector. First results are presented for small mass differences between the scalar top and neutralino masses. This corresponds to a small expected visible energy in the detector. An ILC will be a unique accelerator to explore this scenario. In addition to finding the existence of light stop quarks, the precise measurement of their properties is crucial for testing their impact on the dark matter relic abundance and the mechanism of electroweak baryogenesis. Significant sensitivity for mass differences down to 5 GeV are obtained. The simulation is based on a fast and realistic detector simulation. A vertex detector concept of the Linear Collider Flavor Identification (LCFI)collaboration, which studies pixel detectors for heavy quark flavour identification, is implemented in the simulations for c-quark tagging. The study extends simulations for large mass differences (large visible energy) for which aspects of different detector simulations, the vertex detector design, and different methods for the determination of the scalar top mass are discussed. Based on the detailed simulations we study the uncertainties for the dark matter density predictions and their estimated uncertainties from various sources. In the region of parameters where stop-neutralino co-annihilation leads to a value of the relic density consistent with experimental results, as precisely determined by the Wilkinson Microwave Anisotropy Probe (WMAP), the stop-neutralino mass difference is small and the ILC will be able to explore this region efficiently.Comment: 11 pages, 11 figures, presented at SUSY'0

    Precision Measurement of a Particle Mass at the Linear Collider

    Full text link
    Precision measurement of the stop mass at the ILC is done in a method based on cross-sections measurements at two different center-of-mass energies. This allows to minimize both the statistical and systematic errors. In the framework of the MSSM, a light stop, compatible with electro-weak baryogenesis, is studied in its decay into a charm jet and neutralino, the Lightest Supersymmetric Particle(LSP), as a candidate of dark matter. This takes place for a small stop-neutralino mass difference.Comment: 6 pages, 4 figures, 3tables, Conference(Workshop)-LCWS/ILC2007-June,2,200
    • …
    corecore